The DNA–protein interaction modes of FEN-1 with gap substrates and their implication in preventing duplication mutations
نویسندگان
چکیده
Flap endonuclease-1 (FEN-1) is a structure-specific nuclease best known for its involvement in RNA primer removal and long-patch base excision repair. This enzyme is known to possess 5'-flap endo- (FEN) and 5'-3' exo- (EXO) nuclease activities. Recently, FEN-1 has been reported to also possess a gap endonuclease (GEN) activity, which is possibly involved in apoptotic DNA fragmentation and the resolution of stalled DNA replication forks. In the current study, we compare the kinetics of these activities to shed light on the aspects of DNA structure and FEN-1 DNA-binding elements that affect substrate cleavage. By using DNA binding deficient mutants of FEN-1, we determine that the GEN activity is analogous to FEN activity in that the single-stranded DNA region of DNA substrates interacts with the clamp region of FEN-1. In addition, we show that the C-terminal extension of human FEN-1 likely interacts with the downstream duplex portion of all substrates. Taken together, a substrate-binding model that explains how FEN-1, which has a single active center, can have seemingly different activities is proposed. Furthermore, based on the evidence that GEN activity in complex with WRN protein cleaves hairpin and internal loop substrates, we suggest that the GEN activity may prevent repeat expansions and duplication mutations.
منابع مشابه
Interaction Interface of Human Flap Endonuclease-1 with Its DNA Substrates*□S
Flap endonuclease-1 or FEN-1 is a structure-specific and multifunctional nuclease critical for DNA replication, repair, and recombination; however, its interaction with DNA substrates has not been fully understood. In the current study, we have defined the borders of the interaction between the FEN-1 protein and its DNA substrates and identified six clusters of conserved positively charged amin...
متن کاملInteraction interface of human flap endonuclease-1 with its DNA substrates.
Flap endonuclease-1 or FEN-1 is a structure-specific and multifunctional nuclease critical for DNA replication, repair, and recombination; however, its interaction with DNA substrates has not been fully understood. In the current study, we have defined the borders of the interaction between the FEN-1 protein and its DNA substrates and identified six clusters of conserved positively charged amin...
متن کاملInteraction of Novel Ni2+, Cu2+ and VO2+ Complexes of a Tridentate Schiff Base Ligand with DNA, BSA and their Cytotoxic Activity
In this research, the interaction of [CuL(DMF)], [NiL(DMF)] and [VOL(DMF)] (where L = ((E)-4-((2-amino-5-nitrophenylimino)methyl)benzene-1,3-diol)) complexes derived from tridentate Schiff base ligand with bovine serum albumin (BSA) and DNA was investigated via electronic absorption and fluorescence spectroscopy. The Ultraviolet-Visible (UV-Vis) spectra exhibited an isosbestic point for the com...
متن کاملInvestigation of GDF9 and BMP15 Polymorphisms in Mehraban Sheep to Find the Missenses as Impact on Protein
Utilization of fecundity genes such as GDF9 and BMP15 can help improve reproductive traits in sheep breeding programme. To evaluate effects of missense mutations on protein function, the polymorphisms of GDF9 and BMP15 genes were screened in twelve mehraban sheep using DNA sequencing, followed by protein structure modeling. Six single nucleotide polymorphism (SNPs) known as FecG mutations (G1-G...
متن کاملINTERACTION OF DOXORUBICIN WITH DNA-HMG1 COMPLEX
In this study, the interaction of the anthracycline antibiotic doxorubicin with DNA-HMG 1 complex was investigated employing UV/VIS spectroscopy, thermal denaturation and DNA cellulose chromatography techniques. The results indicated that the binding of doxorubicin to the protein reduces its Tm in a dose dependent manner. Although doxorubicin protects free DNA against thermal denaturation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006